Conversion of the enzyme guanylate kinase into a mitotic-spindle orienting protein by a single mutation that inhibits GMP-induced closing.

نویسندگان

  • Christopher A Johnston
  • Dustin S Whitney
  • Brian F Volkman
  • Chris Q Doe
  • Kenneth E Prehoda
چکیده

New protein functions can require complex sequence changes, but the minimal path is not well understood. The guanylate kinase enzyme (GK(enz)), which catalyzes phosphotransfer from ATP to GMP, evolved into the GK domain (GK(dom)), a protein-binding domain found in membrane associate guanylate kinases that function in mitotic spindle orientation and cell adhesion. Using an induced polarity assay for GK(dom) function, we show that a single serine to proline mutation is sufficient to switch extant GK(enz) into a functional GK(dom). The mutation blocks catalysis (GK(enz) function) but allows protein binding and spindle orientation (GK(dom) function). Furthermore, whereas the GK(enz) undergoes a large closing motion upon GMP binding, fluorescence quenching and NMR demonstrate that the S → P mutation inhibits GMP-induced GK movements. Disrupting GK closing with a mutation at a different position also leads to GK(dom) function, suggesting that blocking the GK(enz) closing motion is sufficient for functional conversion of GK(enz) to GK(dom). Although subtle changes in protein function can require complex sequence paths, our work shows that entirely new functions can arise from single mutations that alter protein dynamics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure of an Enzyme-Derived Phosphoprotein Recognition Domain

Membrane Associated Guanylate Kinases (MAGUKs) contain a protein interaction domain (GK(dom)) derived from the enzyme Guanylate Kinase (GK(enz)). Here we show that GK(dom) from the MAGUK Discs large (Dlg) is a phosphoprotein recognition domain, specifically recognizing the phosphorylated form of the mitotic spindle orientation protein Partner of Inscuteable (Pins). We determined the structure o...

متن کامل

Mechanistic insight into the functional transition of the enzyme guanylate kinase induced by a single mutation

Dramatic functional changes of enzyme usually require scores of alterations in amino acid sequence. However, in the case of guanylate kinase (GK), the functional novelty is induced by a single (S→P) mutation, leading to the functional transition of the enzyme from a phosphoryl transfer kinase into a phosphorprotein interaction domain. Here, by using molecular dynamic (MD) and metadynamics simul...

متن کامل

Effects of T208E activating mutation on MARK2 protein structure and dynamics: Modeling and simulation

Microtubule Affinity-Regulating Kinase 2 (MARK2) protein has a substantial role in regulation of vital cellular processes like induction of polarity, regulation of cell junctions, cytoskeleton structure and cell differentiation. The abnormal function of this protein has been associated with a number of pathological conditions like Alzheimer disease, autism, several carcinomas and development of...

متن کامل

Evolution of a Protein Interaction Domain Family by Tuning Conformational Flexibility.

Conformational flexibility allows proteins to adopt multiple functionally important conformations but can also lead to nonfunctional structures. We analyzed the dynamic behavior of the enzyme guanylate kinase as it evolved into the GK protein interaction domain (GKPID) to investigate the role of flexibility in the evolution of new protein functions. We found that the ancestral enzyme is very fl...

متن کامل

Structural characterization of the closed conformation of mouse guanylate kinase.

Guanylate kinase (GMPK) is a nucleoside monophosphate kinase that catalyzes the reversible phosphoryl transfer from ATP to GMP to yield ADP and GDP. In addition to phosphorylating GMP, antiviral prodrugs such as acyclovir, ganciclovir, and carbovir and anticancer prodrugs such as the thiopurines are dependent on GMPK for their activation. Hence, structural information on mammalian GMPK could pl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 108 44  شماره 

صفحات  -

تاریخ انتشار 2011